Mr. B. R. Gupta (Govt. Teacher)
M.A., B.ED., CTET, STET
Trigonometric functions
sin α, cos α
tan α = | sin α | , α ≠ | π | + πn, n є Z |
cos α | 2 |
cot α = | cos α | , α ≠ π + πn, n є Z |
sin α |
tan α · cot α = 1
sec α = | 1 | , α ≠ | π | + πn, n є Z |
cos α | 2 |
cosec α = | 1 | , α ≠ π + πn, n є Z |
sin α |
Pythagorean identity
sin2 α + cos2 α = 1
1 + tan2 α = | 1 |
cos2 α |
1 + cot2 α = | 1 |
sin2 α |
Sum-Difference Formulas
sin(α + β) = sin α · cos β + cos α · sin β
sin(α – β) = sin α · cos β – cos α · sin β
cos(α + β) = cos α · cos β – sin α · sin β
cos(α – β) = cos α · cos β + sin α · sin β
tan(α + β) = | tan α + tan β |
1 – tanα · tan β |
tan(α – β) = | tan α – tan β |
1 + tanα · tan β |
cot(α + β) = | cotα · cot β - 1 |
cot β + cot α |
cot(α - β) = | cotα · cot β + 1 |
cot β - cot α |
Double angle formulas
sin 2α = 2 sin α · cos α
cos 2α = cos2 α - sin2 α
tan 2α = | 2 tan α |
1 - tan2 α |
cot 2α = | cot2 α - 1 |
2 cot α |
Triple angle formulas
sin 3α = 3 sin α - 4 sin3 α
cos 3α = 4 cos3 α - 3 cos α
tan 3α = | 3 tan α - tan3 α |
1 - 3 tan2 α |
cot 3α = | 3 cot α - cot3 α |
1 - 3 cot2 α |
Power-reduction formula
sin2 α = | 1 - cos 2α |
2 |
cos2 α = | 1 + cos 2α |
2 |
sin3 α = | 3 sin α - sin 3α |
4 |
cos3 α = | 3 cos α + cos 3α |
4 |
Sum (difference) to product formulas
sin α + sin β = 2 sin | α + β | cos | α - β |
2 | 2 |
sin α - sin β = 2 sin | α - β | cos | α + β |
2 | 2 |
cos α + cos β = 2 cos | α + β | cos | α - β |
2 | 2 |
cos α - cos β = -2 sin | α + β | sin | α - β |
2 | 2 |
tan α + sin β = | sin(α + β) |
cos α · cos β |
tan α - sin β = | sin(α - β) |
cos α · cos β |
cot α + sin β = | sin(α + β) |
sin α · sin β |
cot α - sin β = | sin(α - β) |
sin α · sin β |
a sin α + b cos α = r sin (α + φ),
where r2 = a2 + b2, sin φ = | b | , tan φ = | b |
r | a |
Product to sum (difference) formulas
sin α · sin β = | 1 | (cos(α - β) - cos(α + β)) |
2 |
sin α · cos β = | 1 | (sin(α + β) + sin(α - β)) |
2 |
cos α · cos β = | 1 | (cos(α + β) + cos(α - β)) |
2 |
Tangent half-angle substitution
sin α = | 2 tan (α/2) |
1 + tan2 (α/2) |
cos α = | 1 - tan2 (α/2) |
1 + tan2 (α/2) |
tan α = | 2 tan (α/2) |
1 - tan2 (α/2) |
cot α = | 1 - tan2 (α/2) | |||||||||||||||||||||||||
2 tan (α/2)Table of cosine in radians
Table of angles cosines from 0° to 180°
Table of angles cosines from 181° to 360°
|
No comments:
Post a Comment